DEVELOPMENT

DEVELOPMENT

DEVELOPMENT

Treatise, Articles

Organ

Organ

Osteochondral, cartilage
Osteochondral regeneration using constructs of mesenchymal stem cells made by bio three-dimensional printing in mini-pigs.

Yamasaki A, Kunitomi Y, Murata D, Sunaga T, Kuramoto T, Sogawa T, Misumi K. J Orthop Res. 2019 Jun; 37 (6): 1398-1408.

A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells.

Murata D, Tokunaga S, Tamura T, Kawaguchi H, Miyoshi N, Fujiki M, Nakayama K, Misumi K. J Orthop Surg Res. 2015 Mar 18;10:35.

Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells.

Ishihara K, Nakayama K, Akieda S, Matsuda S, Iwamoto Y. J Orthop Surg Res. 2014 Oct 14; 9: 98.

Vascular
Development of an immunodeficient pig model allowing long-term accommodation of artificial human vascular tubes.

Itoh M, Mukae Y, Kitsuka T, Arai K, Nakamura A, Uchihashi K, Toda S, Matsubayashi K, Oyama JI, Node K, Kami D, Gojo S, Morita S, Nishida T, Nakayama K, Kobayashi E. Nat Commun. 2019 May 21;10(1):2244. doi: 10.1038/s41467-019-10107-1.

iPSC-Derived Vascular Cell Spheroids as Building Blocks for Scaffold-Free Biofabrication.

Moldovan L, Barnard A, Gil CH, Lin Y, Grant MB, Yoder MC, Prasain N, Moldovan NI. Biotechnol J. 2017 Dec; 12 (12). Epub 2017 Nov 14.

Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae.

Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, Toda S, Oyama J, Node K, Morita S. PLoS One. 2015 Sep 1; 10 (9): e0136681.

Nerve
A scaffold-free Bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the rats.

Takeuchi H, Ikeguchi R, Aoyama T, Oda H, Yurie H, Mitsuzawa S, Tanaka M, Ohta S, Akieda S, Miyazaki Y, Nakayama K, Matsuda S. 2019 Nov 14. doi: 10.1002/micr.30533.

The Efficacy of a Scaffold-free Bio 3D Conduit Developed from Autologous Dermal Fibroblasts on Peripheral Nerve Regeneration in a Canine Ulnar Nerve Injury Model: A Preclinical Proof-of-Concept Study.

Mitsuzawa S, Ikeguchi R, Aoyama T, Takeuchi H, Yurie H, Oda H, Ohta S, Ushimaru M, Ito T, Tanaka M, Kunitomi Y, Tsuji M, Akieda S, Nakayama K, Matsuda S. Cell Transplant. 2019 Jun 12: 963689719855346.

The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model.

Yurie H, Ikeguchi R, Aoyama T, Kaizawa Y, Tajino J, Ito A, Ohta S, Oda H, Takeuchi H, Akieda S, Tsuji M, Nakayama K, Matsuda S. PLoS One. 2017 Feb 13; 12 (2): e0171448.

Liver
In vivo and ex vivo methods of growing a liver bud through tissue connection.

Yanagi Y, Nakayama K, Taguchi T, Enosawa S, Tamura T, Yoshimaru K, Matsuura T, Hayashida M, Kohashi K, Oda Y, Yamaza T, Kobayashi E. Sci Rep. 2017 Oct 26; 7(1): 14085.

Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery.

Kizawa H, Nagao E, Shimamura M, Zhang G, Torii H. Biochem Biophys Rep. 2017 Apr 14;10: 186-191.

Bladder
Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-Injured Rat Bladders.

Imamura T, Shimamura M, Ogawa T, Minagawa T, Nagai T, Silwal Gautam S, Ishizuka O. Tissue Eng Part A. 2018 Nov; 24 (21-22): 1574-1587.

Diaphragm
Regeneration of diaphragm with bio-3D cellular patch.

Zhang XY, Yanagi Y, Sheng Z, Nagata K, Nakayama K, Taguchi T. Biomaterials. 2018 Jun; 167: 1-14.

Esophagus
Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing.

Takeoka Y, Matsumoto K, Taniguchi D, Tsuchiya T, Machino R, Moriyama M, Oyama S, Tetsuo T, Taura Y, Takagi K, Yoshida T, Elgalad A, Matsuo N, Kunizaki M, Tobinaga S, Nonaka T, Hidaka S, Yamasaki N, Nakayama K, Nagayasu T. PLoS One. 2019 Mar 8; 14 (3): e0211339.

Trachea
Replacement of Rat Tracheas by Layered, Trachea-Like, Scaffold-Free Structures of Human Cells Using a Bio-3D Printing System.

Machino R, Matsumoto K, Taniguchi D, Tsuchiya T, Takeoka Y, Taura Y, Moriyama M, Tetsuo T, Oyama S, Takagi K, Miyazaki T, Hatachi G, Doi R, Shimoyama K, Matsuo N, Yamasaki N, Nakayama K, Nagayasu T. Adv Healthc Mater. 2019 Apr;8(7):e1800983. doi: 10.1002/adhm.201800983. Epub 2019 Jan 11.

Scaffold-free trachea regeneration by tissue engineering with bio-3D printing.

Taniguchi D, Matsumoto K, Tsuchiya T, Machino R, Takeoka Y, Elgalad A, Gunge K, Takagi K, Taura Y, Hatachi G, Matsuo N, Yamasaki N, Nakayama K, Nagayasu T. Interact Cardiovasc Thorac Surg. 2018 May 1; 26 (5): 745-752.

Cardiac tissue
Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer.

Arai K, Murata D, Verissimo AR, Mukae Y, Itoh M, Nakamura A, Morita S, Nakayama K. PLoS One. 2018 Dec 17; 13 (12): e0209162.

Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting.

Ong CS, Fukunishi T, Nashed A, Blazeski A, Zhang H, Hardy S, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli G, Hibino N. J Vis Exp. 2017 Jul 2;(125). doi: 10.3791/55438.

Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes.

Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, DiSilvestre D, Vricella L, Conte J, Tung L, Tomaselli GF, Hibino N. Sci Rep. 2017 Jul 4; 7 (1): 4566.

Cancer tissue
Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture.

van Pel DM, Harada K, Song D, Naus CC, Sin WC. J Cell Commun Signal. 2018 Dec; 12 (4): 723-730.

Review

Review

Progress in scaffold-free bioprinting for cardiovascular medicine.

Moldovan NI. J Cell Mol Med. 2018 Jun; 22 (6): 2964-2969. Review.

Comparison of biomaterial-dependent and independent bioprinting methods for cardiovascular medicine.

Leni Moldovan, Clifford M. Babbeya, Michael P. Murphya, and Nicanor I. Moldovanc, Current Opinion in Biomedical Engineering 2017, 2: 124–131.

Principles of the Kenzan Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting.

Moldovan NI, Hibino N, Nakayama K. Tissue Eng Part B Rev. 2017 Jun; 23 (3): 237-244.